
Mechanizing Bisimulation for a Linear Functional
Language: Enforcing Linearity Without Linearity

L Denney

McGill University

Conference of McGill’s Epic Programming Language Systems
November 2025

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
1 / 25

Goal

Goal Adapt the mechanization of Howe’s method in Beluga that
follows Pitts (1997) to a linear language.

Others have done similar proofs about a linear language including
Bierman (2000) and Crole (2001) but mechanizations of these would
be difficult and forced to struggle with the context splitting

Our Idea: Be more clever and build on an observation by Crary
(2010): If a variable occurs once, then the typing assumption will be
only used once! In other words, occurrence of variables in the syntax
correspond to how often typing assumptions are consumed.

This idea has been used in mechanizing other linear systems such as
processes [Sano et al. (2023)]

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
2 / 25

Motivation and Background

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
3 / 25

Linear Functional Language

All variables must occur exactly once in an expression.
No duplicating or dropping.

Encodes resource control into a language: Quantum programming,
processes, etc.

The linear functional language we will consider, which is lazily evaluated:

Types τ ::= ⊤ | τ ⊸ τ

Terms M,N ::= x | lam x .M | M N | ⟨⟩
Values V ::= lam x .M | ⟨⟩

Typing Function Applications Linearly

Γ1 ⊢ M : σ ⊸ σ′ Γ2 ⊢ N : σ app
Γ1, Γ2 ⊢ M N : σ′

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
4 / 25

The Big Idea: Contextual Equivalence

Two sub-programs can be interchanged within a larger program without
affecting overall behaviour.

Example:

for n in range(1,N): # N incl. | sum += N*(N+1)/2

sum += n |

Definition

Two programs are contextually equivalent if they are interchangeable
within all larger programs without affecting the observable behaviour

Why do we want this? Compiler Optimizations

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
5 / 25

Bisimilarity

Proving contextual equivalence directly is hard because it requires
quantification over every possible context, so to get around this we
introduce bisimilarity!

Definition

Two programs (closed terms) are bisimilar if whenever the first evaluates
to a value, so does the second one, and all its sub-programs are also
bisimilar and vise versa

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
6 / 25

Howe’s Method

Want to prove that applicative bisimilarity is a congruence [Howe (1989)]

Applicative Bisimilarity: a coinductive characterization of observational
equivalence for proving program equivalence CBN functional languages

Congruence: a transitive relation respecting the way terms are constructed

We can get bisimilarity from similarity by symmetry, so we only need to
show that applicative similarity is a pre-congruence.

Applicative simulation is a family of typed relations on programs that are related
by the result of CBN evaluation. The union of two applicative simulations is still
a simulation, and Applicative Similarity is the largest of those.

Pre-Congruence: A compatible transitive relation, where compatible is defined
below.

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
7 / 25

Howe’s Method

Our language has a variable binding operator lam so we need to
consider relations over open terms to be able to consider all the
subprograms.

We need substitutivity to prove congruence, but proving substitutivity
of similarity for open terms directly is hard

Idea [Howe (1996)]: Define some candidate Howe relation that contains
open similarity then

1 show it is a pre-congruence

2 prove it coincides with similarity

A good tutorial on this is Pitts (1997).

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
8 / 25

Aside: Coinduction

Howe’s method requires both inductive and coinductive reasoning over
open terms, and thankfully Beluga is equipped for both of these.

Induction - finite data, defined with constructors, analyzed with
pattern matching

Coinduction - infinite data, defined with deconstructors
(observations), analyzed with co-pattern matching

“A property holds by induction if there is good reason for it to hold;
whereas a property holds by coinduction if there is no good reason for it
not to hold.”[Kozen and Silva (2017)]

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
9 / 25

Previous Work on Bisimilarity for Linear Languages

”Observations on a linear PCF” [Bierman (2000)]

LinPCF (includes both kinds of linear pairs), in terms of evaluation: function
application and multiplicative pairs are eager, and additive pairs are lazy.

Manages the linear context explicitly

Doesn’t mention mechanization at all, it is expected a mechanization of his
bisimilarity proof would be inelegant and difficult.

”Completeness of Bisimilarity for Contextual Equivalence in Linear
Theories”[Crole (2001)]

Function space, multiplicative pairs and a divergent term, CBN evaluation

Also manages the linear context explicitly

Mentions defining contextual equivalence to be amenable to mechanization,
no mention concerning bisimilarity.

Expected that we can improve upon what a mechanization of his bisimilarity
proof would require.

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
10 / 25

In a Functional Language

Idea:

1 Work in a non linear language

2 Enforce linearity

The language we want to use is a subset of PCFL following Pitts (1997),
without the lists and pairs (for now) .

Types τ ::= ⊤ | τ → τ

Terms M,N ::= x | lam x .M | M N | ⟨⟩
Values V ::= lam x .M | ⟨⟩

It’s typing rules and CBN big step operational semantics m ⇓ v are standard.

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
11 / 25

Linear Predicate

Enforcing linearity without linearity: The Local Linear Predicate

linear x M says that x appears linearly in M and is inductively defined as
follows:

lin var
linear x x

Πx : term.linear y (M y x)
lin lam

linear y (lam λx .M x y)

linear x (M x)
lin app1

linear x ((M x) N)

linear x (N x)
lin app2

linear x (M (N x))

A linear predicate has been used in mechanizing other linear systems such
as processes [Sano et al. (2023)] Now, we want to leverage it for
contextual equivalence - less straightforward than syntactic induction
proofs (we have coinduction)

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
12 / 25

The Meat and Potatoes

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
13 / 25

Goal and Scope

Goal
First, mechanize a proof of bisimulation for linear terms in PCFL using a
linear predicate.
Then, argue this is a nice way of doing it because it:

1 Doesn’t require managing the context explicitly

2 Leverages previous PCFL mechanizations

How
Splice the linear predicate in to the Howe’s method bisimilarity
mechanization in Beluga from Momigliano et al. (2019) and see if I can
make it work!

Scope
We limit our terms to functions, applications, and unit.

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
14 / 25

Beluga

Beluga supports simultaneous substitutions which we can adapt to
preserve linearity. This allows us to encode notoriously painful proofs
such as the substitutivity of the Howe relation with ease

Beluga supports coinductive reasoning

There is already an elegant mechanization of Howe’s method in
Beluga from Marabelli and Momigliano (2019) that we can adapt for
linear terms without having to write it from scratch.

Example of a co-recursive function in Beluga.

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
15 / 25

How(e) Howe’s method works

Recall It is difficult to show similarity/open similarity is substitutive.

Howe proposes a way to get that similarity is a pre-congruence without
proving substitutivity for open similarity directly. [Howe (1996)]

Howe’s Idea: Introduce a relation which

1 contains open similarity

2 is a semi-transitive substitutive pre-congruence

and then prove it coincides with similarity

Proof Structure Define the Howe relation in terms of open similarity,
then prove 8 lemmata about it. Notably, lemma 6 is substitutivity, and
lemma 8 is coincidence with similarity.

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
16 / 25

Predicate in Relation Definitions

Original version

Γ ⊢ ⟨⟩ ≼◦
⊤ n

unit
Γ ⊢ ⟨⟩ ≼H

⊤ n

Γ, x : τ ⊢ x ≼◦
τ n

var
Γ, x : τ ⊢ x ≼H

τ n

Γ ⊢ m1 ≼H
τ→τ ′ m

′
1 Γ ⊢ m2 ≼H

τ m′
2 Γ ⊢ m′

1 m
′
2 ≼

◦
τ ′ n app

Γ ⊢ m1 m2 ≼H
τ ′ n

Γ, x : τ ⊢ m ≼H
τ ′ m

′ Γ ⊢ lam x .m′ ≼◦
τ→τ ′ n

lam
Γ ⊢ lam x .m ≼H

τ→τ ′ n

New version

Γ, x : τ ⊢ m ≼H
τ ′ m

′ Γ ⊢ lam x .m′ ≼◦
τ→τ ′ n linear x m

lam
Γ ⊢ lam x .m ≼H

τ→τ ′ n

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
17 / 25

Changes to the Lemmata

Global linearity predicate lin m
says the the term m is linear
It is defined on the LF level, using
linear in the lambda case

Howe lam needs linear x M as a
premise, but our local linear predi-
cate cannot store information about
all the bound variables for us.
We use a global linear predicate lin
to supply us with the local predicate
when we encounter a binder.

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
18 / 25

Additional Lemmas

Two Examples: Renaming preserves local and global linearity

Both are used in howe ren, which is used in the proof of howe subst wkn,
which is used in the proof of the 6th lemma, substitutivity.

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
19 / 25

Changes Important to Mechanization

The Beluga renaming and substitution don’t preserve linearity, so we need
to construct definitions of them that do.

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
20 / 25

Conclusion

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
21 / 25

Conclusion

We adapted the Momigliano et al. (2019) mechanization of Howe’s
method for linear terms.

We discovered that the linear predicate lets us reuse the
mechanization even though its non-linear, and made mechanization
easier compared to past attempts by letting us avoid explicit context
management.

It worked even though Howe’s method requires both inductive and
coinductive reasoning.

We should add back in the terms we ignored from PCFL, and
complete the mechanization for those.

We are one big step closer to contextual equivalence for linear
programs!

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
22 / 25

Next Step: Reaching Contextual Equivalence

To reach Contextual Equivalence for linear programs:

1 define a linear contextual preorder (this is to contextual equivalence
what similarity is to bisimilarity)

2 Show the linear contextual preorder coincides with similarity (the one
we got from this mechanization!)

Crole (2001) claims his definition of linear contextual preorder is more
suitable for mechanization than Bierman (2000)’s is, although his requires
additional lemmas, and Bierman has fewer definitional clauses.

Look at what each of them did and try to simplify with a linear predicate.
This could lead us to a cleaner mechanization of Contextual Equivalence
than what either of their strategies currently require.

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
23 / 25

References I

A. Pitts, Operationally-Based Theories of Program Equivalence, ser.
Publications of the Newton Institute. Cambridge University Press,
1997, p. 241–298.

G. M. Bierman, “Program equivalence in a linear functional language,”
Journal of Functional Programming, vol. 10, no. 2, pp. 167–190, 2000.

R. L. Crole, “Completeness of bisimilarity for contextual equivalence in
linear theories,” Logic Journal of the IGPL, vol. 9, no. 1, pp. 27–51, 01
2001. [Online]. Available: https://doi.org/10.1093/jigpal/9.1.27

K. Crary, “Higher-order representation of substructural logics,” SIGPLAN
Not., vol. 45, no. 9, p. 131–142, Sep. 2010. [Online]. Available:
https://doi.org/10.1145/1932681.1863565

C. Sano, R. Kavanagh, and B. Pientka, “Mechanizing session-types using
a structural view: Enforcing linearity without linearity,” Proc. ACM
Program. Lang., vol. 7, no. OOPSLA2, Oct. 2023. [Online]. Available:
https://doi.org/10.1145/3622810

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
24 / 25

https://doi.org/10.1093/jigpal/9.1.27
https://doi.org/10.1145/1932681.1863565
https://doi.org/10.1145/3622810

References II

D. Howe, “Equality in lazy computation systems,” in [1989] Proceedings.
Fourth Annual Symposium on Logic in Computer Science. Pacific
Grove, CA, USA: IEEE Comput. Soc. Press, 1989, pp. 198–203.

D. J. Howe, “Proving congruence of bisimulation in functional
programming languages,” Information and Computation, vol. 124, no. 2,
pp. 103–112, 1996. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0890540196900085

D. Kozen and A. Silva, “Practical coinduction,” Mathematical Structures
in Computer Science, vol. 27, no. 7, p. 1132–1152, 2017.

A. Momigliano, B. Pientka, and D. Thibodeau, “A case study in
programming coinductive proofs: Howe’s method,” Mathematical
Structures in Computer Science, vol. 29, no. 8, p. 1309–1343, 2019.

G. Marabelli and A. Momigliano, “Formalizing program equivalences in
dependent type theory,” 2019. [Online]. Available:
https://ceur-ws.org/Vol-2504/paper23.pdf

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functional Language: Enforcing Linearity Without Linearity
Conference of McGill’s Epic Programming Language Systems November 2025
25 / 25

https://www.sciencedirect.com/science/article/pii/S0890540196900085
https://ceur-ws.org/Vol-2504/paper23.pdf

	Motivation and Background
	Linear Functional Language
	Program Equivalence
	Enforcing Linearity Without Linearity

	The Meat and Potatoes
	How the Linear Predicate Changes to the Proof

	Conclusion
	References

