Mechanizing Bisimulation for a Linear Functional
Language: Enforcing Linearity Without Linearity

L Denney

McGill University

Conference of McGill's Epic Programming Language Systems
November 2025

Conference of McGill's Epic Programming |
L Denney cG y Mechanizing Bisimulation for a Linear Functic 1/25

Goal

@ Goal Adapt the mechanization of Howe's method in Beluga that
follows Pitts (1997) to a linear language.

o Others have done similar proofs about a linear language including
Bierman (2000) and Crole (2001) but mechanizations of these would
be difficult and forced to struggle with the context splitting

@ Our Idea: Be more clever and build on an observation by Crary
(2010): If a variable occurs once, then the typing assumption will be
only used once! In other words, occurrence of variables in the syntax
correspond to how often typing assumptions are consumed.

o This idea has been used in mechanizing other linear systems such as
processes [Sano et al. (2023)]

Conference of McGill's Epic Programming |
L Denney (McGill University) Mechanizing Bisimulation for a Linear Functic 2 /25

Motivation and Background J

Conference of McGill's Epic Programming |

_Mechanizing Bisimulation for a Linear Functic 3 /25

Linear Functional Language

@ All variables must occur exactly once in an expression.
No duplicating or dropping.

@ Encodes resource control into a language: Quantum programming,
processes, etc.

The linear functional language we will consider, which is lazily evaluated:

Types Tu=T|T—oT
Terms M,N = x| lamx.M | M N | ()
Values V i:=1lamx.M | ()

Typing Function Applications Linearly

MMFM:0—o0o hHN:o
rl,rzl—MN:O'/

app

Conference of McGill's Epic Programming |
Mechanizing Bisimulation for a Linear Functic 4 /25

The Big Idea: Contextual Equivalence

Two sub-programs can be interchanged within a larger program without
affecting overall behaviour.

Example:
for n in range(1,N): # N incl. | sum += Nx(N+1)/2
sum += n |

Definition

Two programs are contextually equivalent if they are interchangeable
within all larger programs without affecting the observable behaviour

Why do we want this? Compiler Optimizations

Conference of McGill's Epic Programming |
L Denney cG y Mechanizing Bisimulation for a Linear Functic 5/25

Bisimilarity

Proving contextual equivalence directly is hard because it requires
quantification over every possible context, so to get around this we
introduce bisimilarity!

Definition

Two programs (closed terms) are bisimilar if whenever the first evaluates
to a value, so does the second one, and all its sub-programs are also
bisimilar and vise versa

Conference of McGill's Epic Programming |
Mechanizing Bisimulation for a Linear Functic 6 /25

Howe's Method

Want to prove that applicative bisimilarity is a congruence [Howe (1989)]

Applicative Bisimilarity: a coinductive characterization of observational
equivalence for proving program equivalence CBN functional languages

Congruence: a transitive relation respecting the way terms are constructed

We can get bisimilarity from similarity by symmetry, so we only need to
show that applicative similarity is a pre-congruence.

Applicative simulation is a family of typed relations on programs that are related
by the result of CBN evaluation. The union of two applicative simulations is still
a simulation, and Applicative Similarity is the largest of those.

Pre-Congruence: A compatible transitive relation, where compatible is defined
below.

Definition 2 (Compatible Relation). A relation I' - m R, n is compatible when:
(€T R ()
CY)T,zrkz R, z;
(C2)T,z:7Fm Ry nentails T F (lamz.m) R, (lamz.n);
(C3)TFmy Rrsr ny and I'F my Ry ng entails T'F (my m2) R (n1 ng);
Conference of McGill's Epic Programming |

_Mechanizing Bisimulation for a Linear Functic 7 /25

Howe's Method

@ Our language has a variable binding operator 1lam so we need to
consider relations over open terms to be able to consider all the
subprograms.

@ We need substitutivity to prove congruence, but proving substitutivity
of similarity for open terms directly is hard

Idea [Howe (1996)]: Define some candidate Howe relation that contains
open similarity then

@ show it is a pre-congruence

@ prove it coincides with similarity

A good tutorial on this is Pitts (1997).

Conference of McGill's Epic Programming |
Mechanizing Bisimulation for a Linear Functic 8 /25

Aside: Coinduction

Howe's method requires both inductive and coinductive reasoning over
open terms, and thankfully Beluga is equipped for both of these.

@ Induction - finite data, defined with constructors, analyzed with
pattern matching

@ Coinduction - infinite data, defined with deconstructors
(observations), analyzed with co-pattern matching

“A property holds by induction if there is good reason for it to hold;
whereas a property holds by coinduction if there is no good reason for it
not to hold.” [Kozen and Silva (2017)]

Conference of McGill's Epic Programming |

McGill University) Mechanizing Bisimulation for a Linear Functic 9 /25

Previous Work on Bisimilarity for Linear Languages

" Observations on a linear PCF" [Bierman (2000)]

@ LinPCF (includes both kinds of linear pairs), in terms of evaluation: function
application and multiplicative pairs are eager, and additive pairs are lazy.

@ Manages the linear context explicitly
@ Doesn’'t mention mechanization at all, it is expected a mechanization of his
bisimilarity proof would be inelegant and difficult.

"Completeness of Bisimilarity for Contextual Equivalence in Linear
Theories” [Crole (2001)]
@ Function space, multiplicative pairs and a divergent term, CBN evaluation
@ Also manages the linear context explicitly

@ Mentions defining contextual equivalence to be amenable to mechanization,
no mention concerning bisimilarity.

@ Expected that we can improve upon what a mechanization of his bisimilarity
proof would require.

Conference of McGill's Epic Programming |

L Denney (McGill University Mechanizing Bisimulation for a Linear Functic 10 /25

In a Functional Language

Idea:
@ Work in a non linear language
@ Enforce linearity

The language we want to use is a subset of PCFL following Pitts (1997),
without the lists and pairs (for now) .

Types Ti=T|7—=>71
Terms M,N = x| lamx.M | M N | ()
Values Vi=1lamx.M | ()

It's typing rules and CBN big step operational semantics m |} v are standard.

Conference of McGill's Epic Programming |
L Denney =Gill Uniy Mechanizing Bisimulation for a Linear Functic 11 /25

Linear Predicate

Enforcing linearity without linearity: The Local Linear Predicate

linear x M says that x appears linearly in M and is inductively defined as
follows:

lin_var Mx : term.linear y (M y x)

linear x x lin_lam

linear y (lam Ax.M x y)

linear x (M x) linear x (N x)

lin_appl lin_app2
linear x ((M x) N) n-app linear x (M (N x)) n-app

A linear predicate has been used in mechanizing other linear systems such
as processes [Sano et al. (2023)] Now, we want to leverage it for
contextual equivalence - less straightforward than syntactic induction
proofs (we have coinduction)

Conference of McGill's Epic Programming |
McGill University) Mechanizing Bisimulation for a Linear Functic 12 /25

The Meat and Potatoes

Conference of McGill's Epic Programming |

_Mechanizing Bisimulation for a Linear Functic 13 /25

Goal and Scope

Goal

First, mechanize a proof of bisimulation for linear terms in PCFL using a
linear predicate.

Then, argue this is a nice way of doing it because it:

@ Doesn’t require managing the context explicitly

@ Leverages previous PCFL mechanizations

How

Splice the linear predicate in to the Howe's method bisimilarity
mechanization in Beluga from Momigliano et al. (2019) and see if | can
make it work!

Scope
We limit our terms to functions, applications, and unit.

Conference of McGill's Epic Programming |
L Denney (McGill University) Mechanizing Bisimulation for a Linear Functic 14 /25

Beluga

@ Beluga supports simultaneous substitutions which we can adapt to
preserve linearity. This allows us to encode notoriously painful proofs
such as the substitutivity of the Howe relation with ease

@ Beluga supports coinductive reasoning

@ There is already an elegant mechanization of Howe's method in
Beluga from Marabelli and Momigliano (2019) that we can adapt for
linear terms without having to write it from scratch.

Example of a co-recursive function in Beluga.

rec sim_refl : Sim [|- T1 [|- M] [|- M=
fun .Sim_unit d => d
| -Sim_lam d => ESim_lam d (mlam R => sim_refl)

Conference of McGill's Epic Programming |

L Denney (McGill University) Mechanizing Bisimulation for a Linear Functic 15 /25

How(e) Howe's method works

Recall It is difficult to show similarity /open similarity is substitutive.

Howe proposes a way to get that similarity is a pre-congruence without
proving substitutivity for open similarity directly. [Howe (1996)]

Howe’s Idea: Introduce a relation which

@ contains open similarity

@ is a semi-transitive substitutive pre-congruence
and then prove it coincides with similarity

Proof Structure Define the Howe relation in terms of open similarity,
then prove 8 lemmata about it. Notably, lemma 6 is substitutivity, and
lemma 8 is coincidence with similarity.

Conference of McGill's Epic Programming |
L Denney (McGill University) Mechanizing Bisimulation for a Linear Functic 16 /25

Predicate in Relation Definitions

Original version

r=(O)<$n . Mx:7hkx<2n
—Hunlt H var
Fr=¢=<sn Mx:7TEx<2n
FTem<?_ om Thm<tm, TEmm=<e
ml \T*)T/ ml m2 T m2 ml m2 \T/n app
Fl—mlmzﬁf"f,n
F,X:Tl—msﬁm’ FElamx.m' 52 n
o lam
MN=lam x.m <,/ n
New version
Mx:7Fkm 4% m' FElam x.m' <2, n linear x m
oy lam
MN=lam x.m <", n

Conference of McGill's Epic Programming |
L Denney (McGill U / Mechanizing Bisimulation for a Linear Functic 17 /25

Changes to the Lemmata

LF lin : term A - type = Global linearity predicate lin m
| Lunit @ Lin unit says the the term m is linear
| LLapp : lin M - lin N Yy .
- lin (app M N) It is defined on the LF level, using

| 1_lam : linear M
- ({y:term _ } lin y => lin (M y))
- lin (lam \y. M y)

linear in the lambda case

Howe_lam needs linear x M as a rec howe_refl ¢ (g:ctx) (M:lg |- term T[11} [g |- lin M]
. . . —> Howe [|- T1 [g |- M] [g |- M] =

premise, but our local linear predi- fun [g |- unit] 1 => Howe_unit osim_refl

. . | [g |- #p] U => Howe_var [g |- #p] osim_refl
cate cannot store information about | g |- tam \. Ml [g |- Ltam 10 (\y. \ly. n)]

. => Howe_lam (howe_refl [g, x:term _ |- M] ?)
all the bound variables for us. osin_refl [g |- 10]

. . . | [g |- app M NI [g |- L_app 11 12]
We use a global linear predicate 1in => Howe_app (howe_refl [g |- M] [g |- 11])

(howe_refl [g |- NI [g |- 12]) osim_refl

to supply us with the local predicate
when we encounter a binder.

Conference of McGill's Epic Programming |
Mechanizing Bisimulation for a Linear Functic 18 /25

Additional Lemmas

Two Examples: Renaming preserves local and global linearity

rec linear_ren : {g:ctx}{h:ctx} {$S: $[h |-# gl}
{M: [g, x:term A[] + term B[1]} [g |- linear (\x. M)]
—> Lin_rename [g] $[h |-# $S]
—> [h |- linear (\x. M[$S[..],x]1)]1;

rec lin_ren : {g:ctx}{h:ctx} {$S: $[h |-# gl}
{M:[g + term B[1]} [g |- lin M]
—> Lin_rename [g] $[h |-# $SI]
> [h |- lin M[$S[..1]]

Both are used in howe_ren, which is used in the proof of howe_subst_wkn,
which is used in the proof of the 6th lemma, substitutivity.

Conference of McGill's Epic Programming |
L Denney (McGill University Mechanizing Bisimulation for a Linear Functic 19 /25

Changes Important to Mechanization

The Beluga renaming and substitution don't preserve linearity, so we need
to construct definitions of them that do.

inductive Lin_sub : {g:ctx} (h:ctx) {$S1 : $[h |- gl} ctype =
| LNil_sub : Lin_sub [] $[h |- ~]

| LCons_sub : Lin_sub [g] $[h |- $S1]

> [h |- lin M]

-> Lin_sub [g, x:term T[]1] $[h|- $S1, M] ;

inductive Lin_rename: {g:ctx} (h:ctx) {$S : $[h |-# gl} ctype =
| LNil_ren : Lin_rename [] $[h |-# ~]

| LCons_ren : Lin_rename [g] $[h |-# $S]

—> Lin_rename [g, x:term T[]1] $[h, x:term T[] |-# $SI[..], x];

Conference of McGill's Epic Programming |
Mechanizing Bisimulation for a Linear Functic 20 /25

L Denney (McGill Un

Conclusion

Conference of McGill's Epic Programming |

_Mechanizing Bisimulation for a Linear Functic 21 /25

Conclusion

e We adapted the Momigliano et al. (2019) mechanization of Howe's
method for linear terms.

@ We discovered that the linear predicate lets us reuse the
mechanization even though its non-linear, and made mechanization
easier compared to past attempts by letting us avoid explicit context
management.

o It worked even though Howe's method requires both inductive and
coinductive reasoning.

@ We should add back in the terms we ignored from PCFL, and
complete the mechanization for those.

@ We are one big step closer to contextual equivalence for linear
programs!

Conference of McGill's Epic Programming |
L Denney (McGill University) Mechanizing Bisimulation for a Linear Functic 22 /25

Next Step: Reaching Contextual Equivalence

To reach Contextual Equivalence for linear programs:

@ define a linear contextual preorder (this is to contextual equivalence
what similarity is to bisimilarity)

@ Show the linear contextual preorder coincides with similarity (the one
we got from this mechanization!)

Crole (2001) claims his definition of linear contextual preorder is more
suitable for mechanization than Bierman (2000)'’s is, although his requires
additional lemmas, and Bierman has fewer definitional clauses.

Look at what each of them did and try to simplify with a linear predicate.
This could lead us to a cleaner mechanization of Contextual Equivalence
than what either of their strategies currently require.

Conference of McGill's Epic Programming |
McGill University) Mechanizing Bisimulation for a Linear Functic 23 /25

References |

A. Pitts, Operationally-Based Theories of Program Equivalence, ser.

Publications of the Newton Institute. Cambridge University Press,
1997, p. 241-298.

G. M. Bierman, “Program equivalence in a linear functional language,”
Journal of Functional Programming, vol. 10, no. 2, pp. 167-190, 2000.

R. L. Crole, “Completeness of bisimilarity for contextual equivalence in
linear theories,” Logic Journal of the IGPL, vol. 9, no. 1, pp. 27-51, 01
2001. [Online]. Available: https://doi.org/10.1093/jigpal /9.1.27

K. Crary, “Higher-order representation of substructural logics,” SIGPLAN
Not., vol. 45, no. 9, p. 131-142, Sep. 2010. [Online]. Available:
https://doi.org/10.1145/1932681.1863565

C. Sano, R. Kavanagh, and B. Pientka, “Mechanizing session-types using
a structural view: Enforcing linearity without linearity,” Proc. ACM
Program. Lang., vol. 7, no. OOPSLA2, Oct. 2023. [Online]. Available:
https://doi.org/10.1145/3622810

Conference of McGill's Epic Programming |
Mechanizing Bisimulation for a Linear Functic 24 /25

L Denney (McGill University)

https://doi.org/10.1093/jigpal/9.1.27
https://doi.org/10.1145/1932681.1863565
https://doi.org/10.1145/3622810

References |l

D. Howe, “Equality in lazy computation systems,” in [1989] Proceedings.
Fourth Annual Symposium on Logic in Computer Science. Pacific
Grove, CA, USA: IEEE Comput. Soc. Press, 1989, pp. 198-203.

D. J. Howe, “Proving congruence of bisimulation in functional
programming languages,” Information and Computation, vol. 124, no. 2,
pp. 103-112, 1996. [Online]. Available:
https: //www.sciencedirect.com /science/article/pii/S0890540196900085

D. Kozen and A. Silva, “Practical coinduction,” Mathematical Structures
in Computer Science, vol. 27, no. 7, p. 1132-1152, 2017.

A. Momigliano, B. Pientka, and D. Thibodeau, “A case study in
programming coinductive proofs: Howe's method,” Mathematical
Structures in Computer Science, vol. 29, no. 8, p. 1309-1343, 2019.

G. Marabelli and A. Momigliano, “Formalizing program equivalences in
dependent type theory,” 2019. [Online]. Available:
https://ceur-ws.org/Vol-2504 /paper23.pdf

Conference of McGill's Epic Programming |
L Denney (McGill University) Mechanizing Bisimulation for a Linear Functic 25 /25

https://www.sciencedirect.com/science/article/pii/S0890540196900085
https://ceur-ws.org/Vol-2504/paper23.pdf

	Motivation and Background
	Linear Functional Language
	Program Equivalence
	Enforcing Linearity Without Linearity

	The Meat and Potatoes
	How the Linear Predicate Changes to the Proof

	Conclusion
	References

